Influence of Black Carbon (BC) Mixing State on Light
Absorption

Jacobson GRL 2000
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Probing BC Particle Structure

Schwartz et al., 2006; Moteki & Kondo, 2007, Subramanian et al., 2010

* Particle-by-particle instrument (number conc; mass conc; dN/dlogD,; dM/dlogDy)

* High specificity towards 'refractory’ black carbon (rBC)
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Probe BC structure:
» Probe coating thickness: optical and BC mass equivalent diameters

» Examine temporal profiles of the scattering and incandescence signals
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Incandescence & Scattering Detection Ranges

Mixing state analysis requires data from both the incandescence and scattering channels
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Proxy for Coating thickness: Incandescence Lagtime

Moteki and Kondo, 2007; Subramanian et al., 2010

AT = Tincandescence - Tscattering = time to 'boil Off' COG“”Q

B Thin coating = At = 0 us | Thick coating = At = 3 us
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Change in BC Mixing State

Mass concentration/(ng m_3)

Sedlacek et al., (GRL, 2012)

Aerosol Lifecycle field campaign held at BNL: August 2, 2012
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* Large increase in the mass conc of BC were observed
« 246+53° for episode A and 272+24° for episode B

* Pronounced increase in Dmedian, 8c for < 80 nm to near 100 nm in episode B
* High correlation with organic aerosol concentration

* O:C ratio indicates organic aerosol is aged
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Lagtime behavior for this Plume Reveals Unique Insights

Sedlacek et al., (2012)

6l 1 Episode A is dominated by short lagtimes for
RSN 1 larger diameter rBC (thinly-coated) with some
longer lagtimes associated with smaller diameter
. rBC (thickly-coated).
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Proxy for Coating thickness: Incandescence Lagtime

Moteki and Kondo, 2007; Subramanian et al., 2010

AT = Tincandescence ~ Tscattering = time to 'boil off’ coa’ring
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Negative lagtime (Sedlacek et al., GRL 2012)
* Most of scattering occurs after incandescence.

« Complex scattering signal contains information
on particle break up.
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Lagtime behavior for this Plume - particle analysis

Examination of the temporal behavior of the scattering channel reveals the presence of
complex behavior
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Over 60% of rBC particles in this plume exhibit this behavior
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Negative Lagtimes and Fracturing of Coated BC Particle

o109 Type A signal  Glycerol 200 . vy
S 2sf \ D.=150nm Jo50 Moteki and Kondo (AST, 2007) observed similarly complex
2 20 A : 200 ?e; scattering signals for thickly-coated graphite:
_‘g 15 " 150 ‘cf: 1.Evaporation rate of coating at the core-coating interface
2 g 100 2 is faster than at the outer surface.
% o ., - 2.Coated particle breaks into BC core and coating material.
& 3.'Denuded’ core immediately undergoes incandescence while

0.0 0 . .

20 the rBC-free coating continues through laser.
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Pronounced asymmetry in the scattering amplitudes is
attributed to rBC located near or at the surface of the
'host’ material.
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Asymmetric Signal Amplitudes

Asymmetric scattering amplitudes could be explained by a rBC core that is located near the
surface

direction of particle in laser (time) [
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hascent particle coating material at core/ vaporized material Denuded BC incandescences &
enters laser beam coating interface fractures particle early pure scatters continue through
vaporizes in laser laser beam

TEM analysis of Mexico City soot by Adachi et al., (2010) reported that:

“long distances between the mass centers of the soot and those of the host particles suggest that
most soot lies near the surface rather than center of the host particles.”

What is the origin of near-surface rBC-containing particles?
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Episode B Contains Markers for Biomass Burn
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Potential Aerosol Source for Episode B

Three-day back trajectory calculations suggest that the advected air mass should contain telltale signs
of biomass burning (BB).
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Job ID: 14492 Job Start: Tue Aug 2 20:50:34 UTC 2011

Source 1 lat.: 40.873346 lon.: -72.872057 hgts: 10, 50, 150 m AGL
Trajectory Direction: Backward ~ Duration: 72 hrs

Vertical Motion Calculation Method: Model Vertical Velocity
Meteorology: 1200Z 2 Aug 2011 - NAM 12 km

Are near surface rBC-containing particles unique to biomass burns?
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Conclusions

Nugget 1: SP2 can provide details into the structure of rBC at high-time resolution

* Optical diameter method can quantify coating thickness for the core-shell configuration
* Lagtime method can probe for the presence of near-surface rBC-containing particles

Nugget 2: Near-surface rBC-containing particles appear to be associated with biomass burning

Follow on research questions

« How common is this class of near-surface BC containing particles?
40% of BC emissions are from biomass burns; 20% from open-pit cooking

* What is the impact of near-surface rBC containing particles on radiative forcing?
Buseck and co-workers (Adachi etal.., 2010) have calculated a 20% reduction in soot direct
forcing due to non-concentric core-shell configuration

« What kind of experiments are needed?
Field campaign focused on biomass burns (proposal invited for submission)
Laboratory-based studies (Boston College study starting in spring of 2012)
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